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[1] Forecasters want to consider an increasingly rich variety
of earthquake ruptures. Past occurrence is captured in part
by paloeseismic observations, which necessarily see three-
dimensional ruptures only at a point. This has not been a
problem before, because forecasts have assumed that faults
are segmented, and that repeated ruptures occur uniformly
along them. A technique is now required to calculate paleo-
earthquake rates at points that may be affected by multiple
recurrence processes, and that is consistent with an all-
possible-ruptures forecast. Dating uncertainties are addressed
by bootstrapping across event time windows, and the result-
ing distributions are transformed into log space as f (ln(T))
where T is interevent time. This takes advantage of a property
of time-dependent recurrence distributions in which their
logarithms are normally distributed. Paleoseismic series nec-
essarily have a finite number of observations such that the
true long-term mean interevent time (m) is hard to estimate.
However the mode (most frequent value) is easier to identify.
Since the mode is equal to the mean of a normal distribution,
m can thus be found at the mode (m) of f (ln(T)) as m = em.
The point m � s occurs where 32% of a folded (half) normal
distribution is found in the interval between ln(T) = 0 and m.
The m + s value is identified by symmetry, which overcomes
the difficulty of absent long intervals in the record. Tests are
conducted with complex synthetic interevent distributions,
and applications to real data from the Hayward and Garlock
faults in California are shown. Citation: Parsons, T. (2012),
Paleoseismic interevent times interpreted for an unsegmented earth-
quake rupture forecast, Geophys. Res. Lett., 39, L13302,
doi:10.1029/2012GL052275.

1. Introduction

[2] Paleoseismic records of earthquake sequences arise
only at some points along faults because they require spe-
cific geological conditions such as a continuous and datable
sedimentary record that is thick enough to capture multiple
earthquake disturbances, and that is deposited near an active
fault. Because of this, many faults have limited or irregular
spatial paleoseismic coverage. Thus paleo-sites are essentially
a point process, and like earthquake epicenters, often cannot
reveal much information about rupture dimensions or vari-
ability. However, they provide essential empirical mean
earthquake rates that are crucial to seismic hazard assessment.
[3] If a fault is assumed to behave according to a charac-

teristic earthquake model [e.g., Schwartz and Coppersmith,

1984; Wesnousky, 1994], where fault segments repeatedly
rupture segments in a similar fashion, then one paleoseismic
site along a fault segment is representative of that segment’s
earthquake recurrence distribution. However, if one hypo-
thesizes a broader range of possible ruptures [e.g., Field and
Page, 2011] that overlap, branch, or that have variable
magnitudes [Weldon et al., 2004] with different recurrence
distributions, then interpreting paleoseismic information at
one point on a segment can become more complicated.
Indeed, sites where overlapping ruptures are thought to
occur, like Wrightwood and Pallet Creek on the San Andreas
fault [Biasi and Weldon, 2009], have paleoseismic series
that cannot be reproduced by any one recurrence distribution
even after 50 � 106 attempts [Parsons, 2008a], signaling a
more complex process. Additionally, earthquake sequences
may change character, branching into long-term cycles of
increased or diminished activity owing to fault interactions
[e.g., Marzocchi and Lombardi, 2008] that obey different
recurrence distributions.
[4] Paleoseismic observations reveal a number of earth-

quakes above an observable surface slip threshold (assumed
proportional to magnitude) in a period. This empirical infor-
mation is extremely valuable to earthquake forecasters who
need a rate to make probability calculations. The variability
in earthquake recurrence intervals due to inconsistency in the
rupture process, which gives rise to aleatory uncertainty in
hazard modeling, is perhaps best represented by paleoseismic
observations. Two sources of epistemic uncertainty must be
accounted for before a paleoseismic rate constrains a proba-
bility calculation: (1) dating uncertainty (usually radiocarbon
dating), and (2) the effects of undersampling that can cause a
time-limited historical or paleoseismic record to preferentially
reflect the shortest intervals and miss the longest ones [Stein
and Newman, 2004]. Dating uncertainty can be addressed
by bootstrapping across the possible event time ranges
(sampling a uniform PDF determined by the reported
uncertainties) [e.g., Ellsworth et al., 1999; Biasi et al., 2002].
Undersampling has been accounted for by Monte Carlo
sampling from long-tailed recurrence distributions [e.g.,
Console et al., 2008; Parsons, 2008a]; this has been neces-
sary because the arithmetic mean of observed interevent
times is not likely to represent the true average recurrence
because the means of distributions thought to represent
earthquake occurrence are all skewed to the right of their
modes, and it requires many samples to capture that.
[5] In this paper I present a method to estimate the long-

term mean and confidence bounds on the earthquake rate at a
point when a segmented and/or characteristic earthquake
rupture concept is not assumed. This application is to be
explored for the Uniform California Earthquake Rupture
Forecast version 3 (UCERF3); prior California forecasts
have segmented faults by characteristic ruptures [e.g., Field
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et al., 2009]. Results are given as interevent times (T) rather
than earthquake rates (1/T), because T is more intuitive and
more often reported in the paleoseismic literature. The pri-
mary result of interest for UCERF3 is the range of allowable
interevent times rather than the mean.

2. Method

[6] In accordance with UCERF, I assume that earthquake
recurrence is time dependent, meaning that a Poisson pro-
cess is not applicable. Probability density functions com-
monly thought to represent time dependent earthquake
recurrence like the lognormal [e.g., Nishenko and Buland,
1987], Brownian Passage Time (inverse Gaussian) [Kagan
and Knopoff, 1987; Matthews et al., 2002] or Weibull
[Hagiwara, 1974] are skewed such that the logarithms of
their probability density are approximately normally distrib-
uted [e.g., Sachs, 1984] (Figure 1).
[7] The point (m) where the mode of the normal distribu-

tion f (ln(T)) occurs is also its mean (Figure 1). Thus em yields
the “true” mean (m) of the interevent time distribution. The
left half of the ln(T) distribution can be thought of as a folded,
or half normal distribution. Solving for the point x from

PlnðTÞ¼x

lnðTÞ¼0
f ð lnðTÞÞ

PlnðTÞ¼m

lnðTÞ¼0
f ð lnðTÞÞ

¼ 0:32 ð1Þ

where 32% of the summed value of the folded distribution is
located, is also the point where one standard deviation (s) on
the mean of the complete distribution can be found. This is
because 32% of the folded distribution is 16% of the complete
distribution, which in turn marks the lower bound of where
68% of the density lies. The value of em�x thus represents
the m � s bound on interevent time. The variable s is used
here to denote 68% confidence bounds on the mean of the
skewed interevent distribution because it is also the standard
deviation of the normal f (ln(T)) distribution. Operationally,
f (ln(T)) is expressed as a histogram, which is summed
numerically. Maximum likelihood estimators exist for folded
normal distributions, but their calculation and error estima-
tion are “troublesome” according to Johnson [1962]. The
histogram mode is subject to binning uncertainties, so I make
10 bootstrap calculations for every series to ensure that it is
stable.
[8] If there were total sampling of the underlying time

dependent distribution, then ln(T) would be a complete nor-
mal distribution, fully symmetric about its mean. This is
however unlikely for most paleoseismic sites unless a very
long record is present. An advantage of transforming the data
into log space is that symmetry applies. Therefore, if the
more complete, left side of the normal distribution f (ln(T)) is
reflected across its mode (m), then the +1s bound on the
recurrence interval estimate can be extrapolated to e(2m�x)

(Figure 1).
[9] The primary uncertainty associated with this approach is

that it approximates an unknown interevent time distribution,

Figure 1. (a) Theoretical example of three different time-dependent recurrence processes affecting a point on a fault dis-
played as a combined probability density function. Relative amplitudes are governed by coefficients of variation. (b) The
natural logarithms of recurrence times ln(T) are binned, which are distributed approximately normally, indicating that the
sum of lognormal distributions can be interpreted as lognormal. Real observations are expected to be sparse for long intere-
vent times, so the log distribution is summed up to the mode of a folded (half) normal distribution. The�1s bound is the point
x where 32% of the density of the folded distribution occurs. If the half-normal distribution is reflected across the mode (m),
then the +1s bound can be identified by symmetry. (c, d) The same process is shown but for a more complex example with
very different recurrence means. More uncertainty is introduced, but reasonable values for the �1s bounds are found.
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or combination of distributions, as generally lognormal.
For example, a normal distribution fit to a Weibull or
Brownian Passage Time distribution on a log axis could be
biased because the Brownian Passage Time has a slightly
heavier right tail and the Weibull a slightly heavier left tail.
Combinations of different interevent behavior at a single site
would also affect the resolution of this technique. I next
examine the impacts of these effects.

3. Testing With Known Distributions

[10] I generate 100 recurrence distributions at random
that are meant to simulate point process behavior in an
unsegmented fault system. These are combinations of 1 to 5
Brownian Passage Time distributions, which can have means
ranging from 0.1–1000 yr, and coefficients of variation from
0.1 to 1.0. Each is given a normalized random weighting
ranging from 0.1 to 1.0 when combined; Figure 1 shows
two examples. I choose to combine 5 or fewer distributions
because I am most concerned about strongly multimodal
distributions. If there are more distributions combined, then
their modes tend to get smoothed out.
[11] The folded ln(T) method as described above is

applied to each of the 100 synthetic distributions, and their
�1s ranges are found by counting where 68% of their
density occurs. These numbers are compared with calculated
values from the proposed method as a way to assess it
(Figure 2). The m � s bounds on interevent times are fit
fairly well, with maximum magnitude of misfits all less than
50 yr, and the majority less than 20 yr (Figures 2a and 2b).

This isn’t surprising since the method is tuned to fit the m� s
bound, and the logarithmic bins of the ln(T) histogram are
smallest at low T. The tradeoff from being able to apply
Gaussian statistics to ln(T) is that each bin has increasing
width with increasing T. When the folded normal distribu-
tions of ln(T) are reflected across the modes/means, and the
m + s bounds on interevent times are extrapolated, the
misfits are thus proportionately larger (Figures 2c and 2d),
increasing with greater mean interevent times (m) (Figure 3).
However, while m + s misfits are greater, the majority are
less than 20 yr.
[12] Real paleoseismic observations are subject to radio-

carbon dating uncertainties, and have varying numbers of
events. A second test is applied where intervals are drawn at
random from an example known distribution (parameters
also generated at random: m = 195, coefficient of variation
a = 0.6). Dating uncertainty bounds of �50 yr are added
to each interval, and interval distributions are created by
bootstrapping across time windows for each event. The
number of included events is systematically reduced from
15 to 2, with misfits being stable down to �4 events
(Figure 2e).

4. Example Application to Observations: South
Hayward and Central Garlock Faults

[13] When the method is applied at California sites, it
returns reasonable earthquake rate estimates based on com-
parison with results from prior methods (�1s ranges

Figure 2. (a) Actual vs. modeled (m � s) values on interevent time are plotted against each other; the red line shows a
slope = 1.0 for reference. “Actual” refers to the variability of the tested distributions. (b) The absolute misfits are shown as
a histogram. The misfits are relatively small on the lower (m � s) bounds. (c) The actual and modeled (m + s) values are
plotted. The dashed black line shows linear fit with a slope of 1.12, suggesting that the method skews a little high. (d) Misfits
are greater on the upper (m + s) bound because of logarithmic binning. (e) Misfits are given as a function of the number
of events used to model mean interevent times (from 100 realizations).
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encompass past results: see Table S1 in Text S1 of the
auxiliary material).1

[14] However, in the interest of full disclosure, I show
applications to two California paleoseismic series that cover
the range from closest to greatest mismatch from past studies.
The first series comes from Tyson’s Lagoon, which lies
on the south Hayward fault in the San Francisco Bay
region of California, and preserves a �1900-yr record of
11 paleoearthquakes and one historic event in 1868
[Lienkaemper et al., 2010]. Possible intervals are boot-
strapped across reported time windows for each event from
radiocarbon dating uncertainty as shown in Figure 4a. In this
example, 1000 series of 12 events are drawn from within
the uncertainty bounds, and their intervals calculated.
[15] The same procedure was used on the real data as

described in Sections 2 and 3. Observations were rebinned
by ln(T), and the mode identified (Figure 4b). Equation (1)
is solved to find the m � s value. The folded normal distri-
bution in log space is then reflected across the mode, and
the m + s value is found through symmetry. The expo-
nentials of these values yield a mean interevent time on the
south Hayward fault of 211 yr, and a �1s range from 116
to 384 yr. Rate values are the reciprocals, yielding 0.0026–
0.0086 events/yr, with a mean of 0.0047 events/yr. The
mean recurrence interval value of 211 yr is essentially the

same as the 210-yr value calculated using a Monte Carlo
technique by Parsons [2008b].
[16] The concern about absent longest intervals seems to

be present with the Hayward fault record, as the normal
distribution of ln(T) is truncated (“missing” data area shown
in Figure 4b). This issue is important in cases like UCERF,
where most of the calculated earthquake rates come from
long-term fault slip rate measurements inferred from offsets
of geologic features that have occurred over 103–106 yr
periods. Since California paleoseismic constraints mostly
represent 102–103 yr scales, their rates need to be consistent
with longer-term, fault-slip-rate solutions that may have
involved many more earthquake cycles. Further, UCERF has
applied time-dependent Brownian Passage Time functions
(with their long tail assumptions) for probability calculations;
thus the underlying earthquake rate values also need to be
consistent with that assumption.
[17] The �250-km long left-lateral Garlock fault trends

roughly east–west across southern California. The El Paso
Peaks paleoseismic site lies on the central segment of the
fault, and is located in an extensional step over that has been
filled by an ephemeral stream. Dawson et al. [2003] report
on six well-resolved earthquakes that happened during the
past 7000 yr. They also note that earthquake occurrence has
been very irregular (intervals range from 215 to 3300 yr),
which can be seen in Figure 4c. Bootstrapping of the central
Garlock intervals results in a distinctly multimodal distri-
bution. Re-binning by natural logarithm puts the mode of the

Figure 3. (a) Mean interevent times (m) are plotted against +1smisfits, and (b), m + s values are plotted against their misfits.
Red lines show linear fits that indicate misfit is a function of increasing interevent time. (c) Calculated m values are plotted
against the actual means. If the method worked perfectly all the points would fall on the red line, which would have a slope
of 1.0, but instead there is scatter and the slope is 0.9.

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GL052275.
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distribution on the very high end, which returns a very high
mean interevent time of m = 3362 yr. In cases like this, it may
be best to consider different modes individually, because of
potential rupture mode switching [e.g., Zöller et al., 2007;
Hillers et al., 2009], or double branching behavior [Marzocchi
and Lombardi, 2008] in which the Garlock fault may only
be stressed by slip events on the San Andreas fault, rather
than directly by plate motions [Parsons, 2006]. As a com-
parative measure, I calculated the fit of the observed intervals
to a lognormal distribution using a Kolmogorov-Smirnov
(KS) test (see auxiliary material for details). While neither
the Hayward nor Garlock series can be confirmed as log-
normally distributed at high significance (if they could this
paper would not be necessary), the significance level of the
Hayward series (55% confidence) far exceeds the central
Garlock (1%).
[18] Lastly, a general consequence of dating uncertainty

is that some event windows overlap, which when boot-
strapped, leads to many intervent times that are close to
zero (Figure 4a). These are not part of the transformed
normal distribution shown in Figure 4b. They instead result
in an isolated spike in negative log space. This occurrence
can be interpreted as short-term clustering behavior (like

aftershocks), and therefore can be added as a static shift to
the interpreted rate if desired.

5. Conclusions

[19] A simple method is identified to calculate long-term
earthquake rates from point process observations of paleo-
earthquakes. A feature of time-dependent earthquake recur-
rence distributions is that binning them by their natural
logarithms results in a normal distribution. This allows iden-
tification of the m � s bound from the most complete part
of the observed record, while the m + s bound is extrapo-
lated by symmetry. Tests using complicated, multi-modal
synthetic distributions show that the method works. This
method can estimate earthquake rates at sites known to have
multiple recurrence processes operating, and where Monte
Carlo methods have failed such as at the Pallet Creek and
Wrightwood sites. An application using real data from the
south Hayward fault returns virtually the same mean as that
found with computationally intensive Monte Carlo sampling.
However, very irregular sequences with long interevent
times such as those on the Garlock fault remain difficult to
interpret.

Figure 4. Best and worst case results: (a) observed Hayward fault paleoseismic event intervals from Lienkaemper et al.
[2010] are bootstrapped across reported radiocarbon dating uncertainties. (b) The same information is displayed except bin-
ning is by natural logarithm of interevent time. The mode of the folded normal distribution is 5.35 (T = 211). This value is
interpreted as the mean of the complete distribution, and the�1s range for Hayward fault interevent times lies between 116–
384 years. “Missing” data refers to the longest interevent times that are inferred to exist based on the long-tailed time-depen-
dent recurrence distributions used to make earthquake probability calculations. (c, d) The same method is applied on a
strongly multimodal series from the central Garlock fault. Distinct clustering behavior makes it more difficult to interpret
this series as having one mean interevent time.
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